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Abstract  The Capon-MVDR algorithm exhibits a threshold effect in mean-
squared error (MSE) performance [1]. Below a specific threshold signal-to-noise 
ratio (SNR), the MSE of signal parameter estimates derived from the Capon 
algorithm rises rapidly. Prediction of this threshold SNR point is clearly of practical 
significance for system design and performance. Via an adaptation of an interval 
error-based method, referred to herein as the method of interval errors (MIE) 
[2],[3], the Capon threshold region MSE performance is accurately predicted. The 
exact pairwise error probabilities for the Capon (and Bartlett) algorithm, derived 
herein, are given by simple finite sums involving no numerical integration and 
include finite sample effects for an arbitrary colored data covariance. Combining 
these probabilities with the large sample MSE predictions of Vaidyanathan and 
Buckley [4], MIE provides accurate prediction of the threshold SNRs for an 
arbitrary number of well-separated sources, circumventing the need for numerous 
Monte Carlo simulations. A new two-point measure of the Capon probability of 
resolution is a serendipitous by-product of this analysis that predicts the SNRs 
required for closely spaced sources to be mutually resolvable by the Capon 
algorithm.  These results represent very valuable design and analysis tools for 
any system employing the Capon-MVDR algorithm. Potential to characterize 
performance in the presence of mismatch is briefly considered.  
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ABSTRACT

The threshold region mean squared error (MSE) performance of
the Capon-MVDR algorithm is predicted via an adaptation of an
interval error based method referred to herein as the method of
interval errors (MIE). MIE requires good approximations of two
quantities: (i) interval error probabilities, and (ii) the algorithm
asymptotic (SNR→ ∞) MSE performance. Exact pairwise er-
ror probabilities for the Capon (and Bartlett) algorithm are de-
rived herein that include finite sample effects for an arbitrary col-
ored data covariance; with the Union Bound, accurate approxima-
tions of the interval error probabilities are obtained. Further, with
the large sample MSE predictions of Vaidyanathan and Buckley,
MIE accurately predicts the signal-to-noise ratio (SNR) threshold
point, below which the Capon algorithm MSE performance de-
grades swiftly. A new exact two-point measure of the probability
of resolution is defined for the Capon algorithm that accurately
predicts the SNR at which sources of arbitrary closeness become
resolvable.

1. INTRODUCTION

The threshold region mean squared error (MSE) performance of
signal parameter estimates derived from the Capon high-resolution
spectral estimator,a.k.a the minimum variance distortionless re-
sponse (MVDR) spectral estimator, is the primary subject of this
analysis. Similar to maximum-likelihood (ML) methods, the Capon
processor is a beamscan type algorithm involving a nonlinear max-
imization of an objective search function (OSF). Parameter esti-
mation algorithms requiring nonlinear searches typically exhibit a
threshold effect in MSE performance. Below a specific signal-to-
noise ratio (SNR) called the estimation threshold, the MSE departs
from the asymptotic MSE performance and rises rapidly (see pp.
278–286 of [14]). Clearly, accurate prediction of this threshold
SNR is of great practical significance for system design/analysis,
particularly for methods capable of significant resolving power at
SNRs too low for signal detection. Below the estimation thresh-
old SNR, the MSE rises until it reaches a maximum that at times
can be well approximated by the variance of an estimate that is
assumed uniformly distributed over the search domain. The SNR
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tations, conclusions, and recommendations are those of the author and are
not necessarily endorsed by the United States Government.

at which the MSE performance achieves this level of futility is
called the no information point. Figure 1 illustrates this composite
MSE performance typical of nonlinear estimation schemes. This
composite MSE behavior is typical of nonlinear ML estimation
[14], but likewise occurs with the Capon spectral estimator [15].
Although well-known, accurate prediction of this composite per-
formance curve for the Capon algorithm remains an open problem.
The goal of this analysis is to predict this MSE curve for the Capon
algorithm with primary emphasis on threshold region performance
from which an accurate prediction of the threshold SNR can be ob-
tained.

A classical method of MSE approximation, referred to herein
as the method of interval errors (MIE), was introduced by Van
Trees [14] and provides a means of predicting threshold region
performance of nonlinear estimation techniques. Variants of MIE
have been applied to subspace based methods and ML estimation
techniques with much success [10, 12, 16, 1, 8]. MIE requires
good approximations of two quantities: (i) interval error proba-
bilities, and (ii) the asymptotic MSE performance. Both of these
quantities are algorithm dependent. The interval error probabil-
ities quantify the likelihood that the estimator derives its signal
parameter estimate from a false peak of the ambiguity function as
opposed to the true peak. These probabilities are approximated via
the Union Bound in conjunction with exact pairwise error proba-
bilities for the Capon estimator that are derived herein; these de-
rived probabilities account for arbitrary colored data covariance
structure as well as finite sample support training effects [3, 7].
These calculations naturally lead to a two-point measure of the
Capon probability of resolution from which accurate prediction of
the SNRs required to resolve closely spaced sources is possible.

2. THE CAPON METHOD

The Capon high-resolution algorithm is well-known [2, 3, 15] and
its performance has been studied extensively. It will be assumed
in this section that all sources are well separated (by at least a
beamwidth or Rayleigh distance) and possess SNRs that exceed
the estimation threshold. In addition it is assumed that signals are
mutually incoherent (coherent sources are not resolvable with the
Capon algorithm), and that the total number of signals present in
the data is known.



2.1. Capon’s Approach

Given a set of independent identically distributed signal bearing
observationsX = [x(1)|x(2)| · · · |x(L)] where each vector is
N × 1 complex circular Gaussian,i.e. x(l) ∼ CNN (0,R),
l = 1, 2, . . . , L, Capon proposed the following power spectral es-
timator:

PCapon(θ) =
1

L−N + 1
· 1

vH(θ) bR−1v(θ)
(1)

wherev(θ) is the assumed array response,bR = XXH , andR =
RN +σ2

S ·v(θT )vH(θT ), whereRN is background noise (possi-
bly colored, but absent of signal-like interference). The maximum
output provides an estimate of the signal powerσ2

S and the signal
parameter estimate is given by the scan value ofθ that achieves
this maximum; namely,

bθ = argmax
θ
PCapon(θ) (2)

(assuming a single signal is present). It shall be assumed thatK
signals are present in the data, and that the Capon parameter esti-
matesbθk, k = 1, 2, . . . ,K, are obtained as the arguments of the
K largest peaks ofPCapon(θ).

2.2. Large Sample MSE of the Capon Algorithm

The large sample (L � N ) local error MSE performance of the
Capon signal parameter estimator has been theoretically analyzed
by several authors. Stoica et. al. [11], Vaidyanathan and Buck-
ley (VB) [13], and Hawkes and Nehorai [5] exploit Taylor’s theo-
rem and complex gradient methods to approximate the MSE. VB
provide an additional bias term via a second order Taylor series
expansion that is particularly useful for capturing finite sample ef-
fects and a broader range of values forL and SNR. The results of
VB will be used herein, and the local error MSE approximation
obtained thereby shall be denoted by the symbolσ2

V B(θk).

3. THRESHOLD REGION MSE PREDICTION

This section describes the method of interval errors (MIE) for MSE
prediction and its adaptation to the Capon algorithm. The reader is
also referred to [1, 16] for an excellent description of MIE in the
context of ML estimation.

3.1. Method of Interval Errors

MIE builds upon the two regions of the composite MSE curve of
Figure 1 that are given by the asymptotes of the SNR; namely, the
no information (SNR→ 0) and asymptotic (SNR→ ∞) regions.
Define the conditioning event

A = {True source parameters areθk, k = 1, 2, . . . ,K} . (3)

MIE decomposes the MSE expression into two components: “no
interval errors” (NIE), and “interval errors” (IE)

E

 “bθk − θk

”2
˛̨̨̨
A

ff
=

Z
pbθk

“ bθk = θ0

˛̨̨
A

”
(θ0 − θk)2 dθ0

= Pr(NIE | A)E

 “bθk − θk

”2
˛̨̨̨
NIE,A

ff
+

Pr( IE | A)E

 “bθk − θk

”2
˛̨̨̨
IE,A

ff

(see equation (127) on p. 282 of [14]). The parameter search space,
i.e. the scanning domain forθ, is divided into disjoint mutually
exclusive intervals based on the characteristics of underlying am-

biguity functionψCapon(θ)
4
= 1

vH (θ)R−1v(θ)
, that depends onR,

and hence is a function of theK SNRs of theK signals present.

3.1.1. Multiple Sources:K ≥ 1

Assume arbitraryK ≥ 1; in addition assume that theseK signals
are well separated by at least a beamwidth (thus, negligible like-
lihood of intersource errors). The extension of MIE to multiple
sources is accomplished by expanding the “no interval errors” set
to include all local neighborhoods of theK peaks in the ambiguity
function due to theK sources present (clearly, all other intervals
lead to IE).The large sample MSE approximation obtained via
σ2

V B(θk) will be used to describe the “no interval errors” com-
ponent contribution to the over MSE of thek-th source parameter
Capon estimate.

Let all local maxima within the signal parameter domain of in-
terest of the ambiguity function when evaluated atK large SNRs
(large enough that the ambiguity function has a local maximum
at every true parameter valueθk) be given by the finite setM =
{θ | θ1, θ2, . . . , θK+M−1} whereθk for k = 1, 2, . . . ,K repre-
sent the peaks due to theK sources, andθk for k = K + 1,K +
2, . . . ,K +M − 1 represent all other non-source local maxima.1

The total MSE for this Capon parameter estimate can be approxi-
mated by

E

 “bθk − θk

”2
˛̨̨̨
A

ff
'"

1−
K+M−1X
m=K+1

p
“ bθk = θm

˛̨̨
A

”#
· σ2

V B(θk)

+

K+M−1X
m=K+1

p
“ bθk = θm

˛̨̨
A

”
(θm − θk)2 .

(4)

The interval error probabilityp
“ bθk = θm

˛̨̨
A

”
represents the like-

lihood of the Capon search algorithm choosing a value associated
with the false peak located atθ = θm as an estimate forθk,
when theK true signals are located at parameter valuesθ = θk,
k = 1, 2, . . . ,K.

As in [1, 16], the dominant term of the Union Bound (UB) can
be used to approximate the interval error probabilities:

p
“ bθk = θm

˛̨̨
A

”
'

Pr[PCapon(θm) > PCapon(θk)| A] .
(5)

This modified UB approximation is remarkably accurate in the
vicinity of the estimation threshold SNR, but tends to over pre-
dict the MSE in the no information region.Thus, the minimum
of (4) and the worse case MSE obtained with an estimatebθk that
is uniformly distributed over the parameter search space will be
chosen as the MSE prediction.

1Such SNRs will exist provided that no array response mismatch is
present,i.e. provided that the array responses used to computePCapon(θ)
match theK array responses existing in the true data covarianceR for θk,
k = 1, 2, . . . , K.



3.2. Capon Pairwise Error Probabilities

The desired pairwise error probabilities are of the form

PCapon
e (θa|θb)

4
= Pr[PCapon(θa) > PCapon(θb)| A] . (6)

Define the following function

F(x,N0)
4
=

xN0

(1 + x)2N0−1

N0−1X
k=0

„
2N0 − 1
k +N0

«
· xk (7)

whereF(x,N0) is the cumulative distribution function for a spe-
cial case of the complex centralF statistic. The algorithm for
computing the pairwise error probabilities for the Capon estimator
is as follows:

1. Define theN × 2 matrix V = [v(θa)|v(θb)] and choose
the desired covariance parameterR.

2. Perform the followingQR-decomposition

R−1/2V = QH

»
∆2×2

0(N−2)×2

–
; let ∆ = [δ1|δ2]. (8)

3. Define the matrixδ2δ
H
2 + F · δ1δ

H
1 for any non-positive

real numberF ≤ 0, and its two eigenvalues asλ1(F ) and
λ2(F ), and their ratio aslλ(F ) = −λ2(F )/λ1(F ).

4. The desired exact pairwise error probability for the Capon
algorithm is given by the expression

PCapon
e (θa|θb) = 0.5 · {1 + sign[λ1(−1)]}
−sign[λ1(−1)] · F [lλ(−1), L−N + 2].

(9)

See [9] for derivation.

4. THE CAPON PROBABILITY OF RESOLUTION

A useful measure of the probability of resolution can be defined
that provides excellent prediction of the SNR at which sources can
be resolved by the Capon algorithm. For a two closely spaced
sources scenario of the formR = RN + σ2

Sa
v(θ0)v

H(θ0) +

σ2
Sb

v(θ0 + δθ)vH(θ0 + δθ), define parameterθMP as the param-
eter value of the source with the smallest power out of the ambi-

guity function,i.e. θMP
4
= arg min

θ0,θ0+δθ
ψCapon(θ). A two point

measure of the probability of resolution can be defined as

PCapon
res (θ0, θ0 + δθ)

4
=

Pr

»
PCapon

„
θ0 +

δθ

2

«
≤ ρ · PCapon(θMP )

–
(10)

where0 ≤ ρ ≤ 1. The parameterρ essentially defines the desired
“dip” in Capon output power between two closely spaced sources.
For example, ifσ2

Sa
= σ2

Sb
andρ = 0.5, thenPCapon

res (θ0, θ0+δθ)
is the probability that the dip inPCapon(θ) midway between these
two sources is at least 3dB less thanPCapon(θ) evaluated at either
source location. Similar measures of resolution have been pro-
posed [4, 15]. The algorithm for computing the Capon two point
probability of resolution is the same as that forPCapon

e (θa|θb)
with θa = θMP , θb = θ0 + δθ/2, andF = −1/ρ; namely, the

desired two point measure of the probability of resolution is given
by

PCapon
res (θ0, θ0 + δθ) = 0.5 · {1 + sign[λ1(−1/ρ)]}
−sign[λ1(−1/ρ)] · F [lλ(−1/ρ), L−N + 2].

(11)

A detailed discussion of performance with closely spaced sources
utilizing this measure is given in [9].

5. NUMERICAL EXAMPLES

5.1. Ex. 1: Single Broadside Signal in White Noise

Consider a Direction of Arrival (DOA) estimation scenario involv-
ing a single source and a set of signal bearing snapshotsx(l) ∼
CN [0, I + σ2

Sv(θT )vH(θT )], l = 1, 2, . . . , L, for anN = 18
element uniform linear array (ULA) with slightly less thanλ/2
element spacing. The array has a 3dB beamwidth of 7.2 degrees
and the desired target signal is arbitrarily placed atθT = 90 de-
grees (array broadside). The signal parameter search space of in-
terest is defined to beθ ∈ [60◦, 120◦]. The signal parameter to
be estimated is simply the scalar angle of arrivalθ = θT . Fig-
ure 2 illustrates the Monte Carlo based MSE performance of the
Capon algorithm alongside its MIE prediction and the Cramér-Rao
Bound (CRB) for sample support casesL = 1.5N, 2N and3N
snapshots, all plotted as a function of the element level SNR. The
Capon estimator clearly is not asymptotically (L fixed, SNR→∞)
efficient, since increasing the SNR does not bring its MSE per-
formance closer to the CRB, hence the need for analyses such as
[11, 13, 5]. The VB MSE prediction is plotted for theL = 2N
case to illustrate that this large sample Taylor Series based ap-
proximation is a local one and is only valid above the estimation
threshold SNR. The goal of MIE is to reasonably predict MSE per-
formance well into the estimation threshold region. Note from the
L = 2N case in Figure 2 that MIE continues with accurate predic-
tion well into the threshold region by accounting for global errors,
whereas the VB MSE prediction becomes inaccurate. For exam-
ple, the VB prediction is off by about 5dB for the SNR required
for a 6 to 1 beam split ratio (RMSE' −7.5dB). Note that in the
no information region the UB approximation begins to over pre-
dict the MSE. Thus, it is allowed to increase until it maxes at the
MSE obtained for an estimate that is uniformly distributed over the
signal parameter domain of interest.

5.2. Ex. 2: Multiple Signals in White Noise

Next consider the same scenario, but with an additional source of
equal power included in the environment at 70 degrees. The MSE
performance of both signal parameter estimates is illustrated in
Figures 3–4. The MIE predictions remain quite accurate.

5.3. Ex. 3: Tilted Minimum Redundancy Linear Array

MIE can be modified to account for the presence of signal model
mismatch. The details of this modification are discussed in [9]
and have been applied extensively with much success to the adap-
tive matched field source localization problem in [6]. As an illus-
tration, consider anN = 4 element minimum redundancy linear
array (MRLA) [15] that has much higher sidelobes (ambiguities)



than a fully populated ULA (see beampatterns in Figure 5). Mis-
match can be introduced by tilting this array, yet processing the
data as if the array were not tilted. MIE can account for this mis-
match as illustrated in Figure 6, where several tilt angles have been
considered, and MSE is plotted as a function of the output array
SNR. Note that the MSE predictions accurately capture both the
global errors due to the high ambiguities (threshold region), as well
as the asymptotic bias resulting from mismatch. Such encompass-
ing predictions have never been made for the Capon algorithm.

5.4. Ex. 4: Probability of Resolution

The two point measure of the probability of resolution proposed
in Section 4 allows one to predict the SNRs required for a dip
to appear between closely spaced sources with high confidence.
This measure of resolution is computable for any chosen pair of
scanning vectorsv(θa),v(θb), and any choice of data covariance
structureR. Thus, deterministic and stochastic mismatch can be
easily introduced into analysis.

As a last example, consider theN = 18 element ULA of ex-
ample 2 of Section 5.2. Let the additional source of equal power
be placed at 93 degrees,i.e. at less than half a beamwidth sep-
aration. Let the nominal ULA array sensor positionszn be inde-
pendently perturbed by zero mean spherically symmetric Gaussian
noise, such that the true array sensor positions are given byzn+en

whereen ∼ N3(0, I3σ
2
RMS). Figure 7 shows a plot of the prob-

ability of resolution as a function of the output array SNR with
L = 2N spatial snapshots. Two forms of mismatch are consid-
ered: (i) deterministic, and (ii) stochastic. The leftmost plot was
generated by simply using a single realization of a perturbed array
as the root MSE of the perturbations is steadily increased (differ-
ent perturbations used for each value ofσ2

RMS). The rightmost
plot represent the resolution observed as one averages over an en-
semble of perturbation realizations. Note that the knee in the curve
appears to be relatively constant as a function of SNR; namely, the
maximal resolution is achieved at an array SNR of approximately
40dB. SNR in excess of this value is essentially wasteful. As more
mismatch is introduced the asymptotic likelihood of resolution de-
creases.

Lastly, note that the dip inPCapon
res before its eventual rise is

simply due to the fact that the underlying Capon ambiguity func-
tion has a single peak midway between the two sources for low
SNRs values (sources are unresolved). It is only when the source
SNRs exceed that necessary for resolution that two distinct peaks
appear at the source locations, with a dip in between. Since the
two points used for the probability of resolution calculation are
chosen such that one is at one of the source locations and the other
midway between the two sources, a dip occurs before the rise.

6. CONCLUSIONS

The method of interval errors (MIE) has been successfully adapted
and extended to the Capon-MVDR algorithm, providing remark-
ably accurate prediction of the MSE threshold SNRs for an arbi-
trary number of well separated sources. These SNRs are predicted
via simple finite sum expressions for the pairwise error probabil-
ities, involving no numerical integration, and circumventing the
need for many time consuming and cumbersome Monte Carlo sim-
ulations. A new two-point measure of the Capon probability of
resolution was proposed that accurately predicts the SNRs neces-
sary for mutual source resolvability for sources of arbitrary close-

ness. Both account for colored noise, finite sample effects, and sig-
nal model mismatch, and thus, represent valuable design/analysis
tools for any system employing the Capon algorithm.
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Goals of Analysis

• Problem:

– Mean Squared Error (MSE) performance of Capon signal parameter 
estimation unknown non-asymptotically

1. Colored Noise (CLR)

2. Signal Modeling Errors (MIS)

3. Adaptive (unknown data covariance) Finite Training (FIN)

– Capon Probability of Resolution (RES) unknown (1-3 above also)

• Goal:

– Develop robust theory for prediction of Capon non-asymptotic MSE and 
probability of resolution
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Capon-MVDR Spectral Estimator:
High-Resolution Algorithm

{ }H
llE xxR =  l =1,2,K ,L

• Capon proposed to design linear filter optimally:

Let data covariance be for
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Solution well-known:
Average Output Power of Optimal Filter:

Choose filter weights w according to

Minimum Variance Distortionless Response
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• Capon suggested the following practical implementation:

where
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• Capon algorithm involves nonlinear 
search on finite interval

• Estimate is the position of the 
maximum of a non-stationary non-
Gaussian stochastic process on a 
finite interval

– Driven by multimodal Ambiguity 
Function

• Interval can be divided into M sub-
intervals

– “No Interval Error” (NIE)
 Local Errors

– “Intervals of Error” (IE)
 Global Errors

• Use intervals to approximate MSE
– Estimation process approximated 

by M-ary hypothesis testing 
problem

Stochastic Realizations
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Adaptation of Method of Interval Errors 
(MIE) MSE Prediction to Capon Algorithm 
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• In general MSE can be written as the sum of two terms*

• MSE for Deterministic (but unknown) Signal Parameters
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Adaptation of Method of Interval Errors 
(MIE) MSE Prediction to Capon Algorithm 
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??
Hmmm…

Difficult part is obtaining
error probabilities!
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Applying Union Bound (UB) to 
Capon Algorithm Error Probabilities

• UB is the most widely used tool for calculation of error probabilities 
in Digital Communications

– Approximation relies on pairwise error probabilities

• UB provides accurate predictions in the threshold region 

  

p ˆ θ k = θm Θ( )= 1 − p ˆ θ k ≠ θm Θ( )= 1 − Pr PCapon θ n( ) > PCapon θm( )Θ[ ]
n ∈ζ k
n ≠ m

U
 
 
 

  

 
 
 

  

• Let true source angles be

• The probability of interval error can be approximated by UB:

ζ k ≡ θ  θk ∪ Φ{ }Φ.
 θ  θ1,θ2,K ,θK{ } and all other ambiguity function

Defininglocal maxima be denoted by set
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Problem!
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Capon-MVDR Algorithm 
Pairwise Error Probabilities
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• Assume data is complex Gaussian and define the following matrices

• The quantities necessary for error probability calculation are given by:

Ω x, M( )≡ x M

1+ x( )2M −1
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k + M

 

 
 

 

 
 x k

k= 0

M −1

∑ .and function

*Richmond, Paper to appear IEEE T-SP, ICASSP ‘04

Exact pairwise error probability given by
simple finite sum involving no numerical integration!

NEW *
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Outline

• Introduction
• Capon Algorithm
• Theory of MSE Prediction
• Numerical Examples

– Threshold SNR Predictions
– Probability of Resolution

• Conclusions
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Single Signal Broadside to Array
in Spatially White Noise

• N=18 element uniform linear array (ULA), (λ/2.25) element spacing
– 3dB Beamwidth ≈ 7.2 degs
– 0dB white noise, True Signal @ 90 degs (broadside)
– Search space θ ∈ [60°,120°], 8000 Monte Carlo simulations

• MIE provides accurate MSE prediction well into threshold region
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Two Well Separated Signals in Spatially 
White Noise: 90° (broadside) and 70°

• Now add equal power source @ 70° to same scenario and array
• MIE accurately predicts threshold region MSE performance of multiple sources
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Capon with Mismatch: 4-element Tilted
Minimum Redundancy Linear Array (MRLA)
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• Angle estimation of broadside source: L = 12 spatial snapsots
• Array tilt introduces mismatch resulting in asymptotic bias



MIT Lincoln LaboratoryC. D. Richmond-18
Tuesday,16th March 2004

ASAP 2004

Outline

• Introduction
• Theory of MSE Prediction
• Numerical Examples

– Threshold SNR Predictions
– Probability of Resolution

• Conclusions
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Closely Spaced Sources and Resolution

Ambiguity Function Stochastic Realizations
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• Two closely spaced signals 
are resolved if estimated 
spectrum yields two distinct 
peaks at the location of both 
signals

• Resolution of Conventional / 
FFT spectrum dictated by 
aperture length of array 
(window length) independent 
of SNR

• Capon algorithm has 
resolution capability superior 
to Conventional approach

– Influenced by aperture 
length and degrees of 
freedom

– Improves with SNR
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Capon Algorithm Probability of Resolution:
A Two Point Measure
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• A two point measure of the Capon probability of resolution can be 
defined by a modified pairwise error probability calculation.

• Let desired “dip” parameter ρ be defined such that 0 ≤ ρ ≤ 1, (e.g., 
ρ = 0.5 represents a 3dB dip).  It can be shown that*

θθθ0θ0 θ0 + δθθ0 + δθθθθ0θ0 θ0 + δθθ0 + δθ

Capon Stochastic Realizations

Fixed SNR

NEW *

*Richmond, Paper to appear IEEE T-SP, ICASSP ‘04
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Capon Probability of Resolution:
Array Position Uncertainty (Mismatch)
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Based on Gaussian
Perturbations:

• N=18 element ULA, (λ/2.25) element spacing, 3dB Beamwidth ≈ 7.2 degs, 0dB white noise
• First signal @ 90 degs (broadside) and second signal @ 90+δθ degs; L=2N;

  n =1,2,K ,N

δθ = 7° δθ = 5°

δθ = 3° δθ = 2°

σ RMS = 0
σ RMS = 0.02λ
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Outline

• Introduction
• Capon Algorithm
• Theory of MSE Prediction
• Numerical Examples
• Conclusions



MIT Lincoln LaboratoryC. D. Richmond-23
Tuesday,16th March 2004

ASAP 2004

Conclusions

• This new theory provides powerful tools for the design and analysis of 
any system employing the Capon algorithm

– Threshold region MSE predictions account for multiple well separated 
sources, finite sample effects, colored data covariance, and signal 
mismatch

– Pairwise error probabilities given by simple finite sums involving no 
numerical integration

• Results rival the best of Bayesian bounds (Ziv-Zakai, Weiss-Weinstein, 
etc.) as means of predicting threshold region performance

– Signal parameters remain deterministic
– Ease of accounting for nuisance parameters (unknown data covariance)
– Fast and computationally efficient
– Accuracy of predictions / Algorithm specific

• A new exact two point measure of the Capon algorithm probability of 
resolution introduced accounting for finite training, arbitrary data 
covariance and signal model mismatch

– Accurate prediction of the SNR necessary for closely spaced signals to be 
resolved
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Where to now ? 

• Adapt MSE predictions to  handle closely spaced sources scenario
• Exact PDF of position of Capon algorithm global max
• Implications to MIMO frequency offset and channel estimation
• Tracking

• Capon signal model mismatch analysis applied to adaptive 
matched field processing with N. Lee

– ASAP Poster / To be submitted to JASA 2004
• Joint probability density function (PDF) of Conventional Bartlett 

and Capon spectral estimators
– To be submitted to IEEE T-SP 2004

• Companion analysis of maximum-likelihood signal parameter 
estimation with estimated colored noise covariance

– Submitted to IEEE T-IT August 2003
• PDF Diagonally loaded Capon with M. Chiani and M. Win
• Applications to localization of brain activity with B. D. Van Veen

Current

Future
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Thank You!
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Backups
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Problem Statement

Target

Interferer

Array

Shallow-Water Multipath Propagation:

• Goal:  quantify what SNR’s are required 
for acceptable MFP localization

• Method:  MFP mean-squared error 
prediction that accounts for

– Ambiguities in MFP output 
– Finite sample adaptive training
– Mismatch
– Colored noise (discrete interferers)

• Goal:  quantify what SNR’s are required 
for acceptable MFP localization

• Method:  MFP mean-squared error 
prediction that accounts for

– Ambiguities in MFP output 
– Finite sample adaptive training
– Mismatch
– Colored noise (discrete interferers)

Matched field processing (MFP)
models acoustic multipath propagation 

to enable 3-D source localization

Range (km)
-10

-8

-6

-4

-2

0

D
ep

th
 (m

)

2 4 6 8 10

0

20

40

60

80

100

“Sparse” Array MFP Beampattern
(Horizontal Array, Endfire)

-10

-8

-6

-4

-2

0

D
ep

th
 (m

)

0

20

40

60

80

100

“Populated” Array MFP Beampattern
(Vertical Array)

Si
de

lo
be

 L
ev

el
 (d

B
)

Si
de

lo
be

 L
ev

el
 (d

B
)

Source

Source



MIT Lincoln LaboratoryC. D. Richmond-28
Tuesday,16th March 2004

ASAP 2004

• Uniform (horizontal) line array, N = 41, element spacing     dx = 15 
m, total length 600 m, depth 100 m

• Southern California environment (water depth 568 m)
• Processing frequency 50 Hz
• Signal:  6 km range, 25 m depth, 0° bearing (endfire)

– Phone level power           = SL - TL (dB) varies
• Noise:  NL =           70 dB, complex white Gaussian noise
• Search space:  2-10 km range, 1-101 m depth, 0° bearing 

Simulation Parameters:
Signal in White Noise
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Assume 1-D parameter estimation here (simple extension to 2-D)
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Input (Phone-Level) SNR (dB) 

• MIE predictions accurate within 1-2 dB for entire SNR range
• For white noise, CBF outperforms Capon (training effects)
• Limits on acceptable performance occur in threshold region
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